As you can probably tell by now, the bulk

of this series is on understanding matrix and vector operations through that more visual lens of linear transformations. This video is no exception, describing the

concepts of inverse matrices, column space, rank, and null space through

that lens. A forewarning though: I’m not going to talk

about the methods for actually computing these things, and some would argue that that’s pretty important. There are a lot of very good resources for

learning those methods outside this series. Keywords: “Gaussian elimination” and “Row

echelon form.” I think most of the value that I actually

have to add here is on the intuition half. Plus, in practice, we usually get software

to compute this stuff for us anyway. First, a few words on the usefulness of linear

algebra. By now, you already have a hint for how it’s

used in describing the the manipulation of space, which is useful for things like computer graphics

and robotics, but one of the main reasons that linear algebra

is more broadly applicable, and required for just about any technical

discipline, is that it lets us solve certain systems of

equations. When I say “system of equations,” I mean you

have a list of variables, things you don’t know, and a list of equations relating them. In a lot of situations, those equations can

get very complicated, but, if you’re lucky, they might take on a

certain special form. Within each equation, the only thing happening

to each variable is that it’s scaled by some constant, and the only thing happening to each of those

scaled variables is that they’re added to each other. So, no exponents or fancy functions, or multiplying

two variables together; things like that. The typical way to organize this sort of special

system of equations is to throw all the variables on the left, and put any lingering constants on the right. It’s also nice to vertically line up the common

variables, and to do that you might need to throw in

some zero coefficients whenever the variable doesn’t show up in one of the equations. This is called a “linear system of equations.” You might notice that this looks a lot like

matrix vector multiplication. In fact, you can package all of the equations

together into a single vector equation, where you have the matrix containing all of

the constant coefficients, and a vector containing all of the variables, and their matrix vector product equals some

different constant vector. Let’s name that constant matrix A, denote the vector holding the variables with

a boldface x, and call the constant vector on the right-hand

side v. This is more than just a notational trick

to get our system of equations written on one line. It sheds light on a pretty cool geometric

interpretation for the problem. The matrix A corresponds with some linear

transformation, so solving Ax=v means we’re looking for a vector x which,

after applying the transformation, lands on v. Think about what’s happening here for a moment. You can hold in your head this really complicated

idea of multiple variables all intermingling with each other just by thinking about squishing and morphing

space and trying to figure out which vector lands on another. Cool, right? To start simple, let’s say you have a system

with two equations and two unknowns. This means that the matrix A is a 2×2 matrix, and v and x are each two dimensional vectors. Now, how we think about the solutions to this

equation depends on whether the transformation associated

with A squishes all of space into a lower dimension, like a line or a point, or if it leaves everything spanning the full

two dimensions where it started. In the language of the last video, we subdivide

into the case where A has zero determinant, and the case where A has nonzero determinant. Let’s start with the most likely case, where

the determinant is nonzero, meaning space does not get squished into a

zero area region. In this case, there will always be one and

only one vector that lands on v, and you can find it by playing the transformation

in reverse. Following where v goes as we rewind the tape

like this, you’ll find the vector x such that A times

x equals v. When you play the transformation in reverse,

it actually corresponds to a separate linear transformation, commonly called “the inverse of A” denoted A to the negative one. For example, if A was a counterclockwise rotation

by 90º then the inverse of A would be a clockwise

rotation by 90º. If A was a rightward shear that pushes j-hat

one unit to the right, the inverse of a would be a leftward shear

that pushes j-hat one unit to the left. In general, A inverse is the unique transformation

with the property that if you first apply A, then follow it with the transformation A inverse, you end up back where you started. Applying one transformation after another

is captured algebraically with matrix multiplication, so the core property of this transformation

A inverse is that A inverse times A equals the matrix that corresponds to doing

nothing. The transformation that does nothing is called

the “identity transformation.” It leaves i-hat and j-hat each where they

are, unmoved, so its columns are one, zero, and zero, one. Once you find this inverse, which, in practice,

you do with a computer, you can solve your equation by multiplying

this inverse matrix by v. And again, what this means geometrically is

that you’re playing the transformation in reverse, and following v. This nonzero determinant case, which for a

random choice of matrix is by far the most likely one, corresponds with the idea that if you have

two unknowns and two equations, it’s almost certainly the case that there’s

a single, unique solution. This idea also makes sense in higher dimensions, when the number of equations equals the number

of unknowns. Again, the system of equations can be translated

to the geometric interpretation where you have some transformation, A, and some vector, v, and you’re looking for the vector x that lands

on v. As long as the transformation A doesn’t squish

all of space into a lower dimension, meaning, its determinant is nonzero, there will be an inverse transformation, A

inverse, with the property that if you first do A, then you do A inverse, it’s the same as doing nothing. And to solve your equation, you just have

to multiply that reverse transformation matrix by the vector v. But when the determinant is zero, and the

transformation associated with this system of equations squishes space into a smaller dimension, there

is no inverse. You cannot un-squish a line to turn it into

a plane. At least, that’s not something that a function

can do. That would require transforming each individual

vector into a whole line full of vectors. But functions can only take a single input

to a single output. Similarly, for three equations in three unknowns, there will be no inverse if the corresponding

transformation squishes 3D space onto the plane, or even if it squishes it onto a line, or

a point. Those all correspond to a determinant of zero, since any region is squished into something

with zero volume. It’s still possible that a solution exists

even when there is no inverse, it’s just that when your transformation squishes

space onto, say, a line, you have to be lucky enough that the vector

v lives somewhere on that line. You might notice that some of these zero determinant

cases feel a lot more restrictive than others. Given a 3×3 matrix, for example, it seems

a lot harder for a solution to exist when it squishes space onto a line compared

to when it squishes things onto a plane, even though both of those are zero determinant. We have some language that’s a bit more specific

than just saying “zero determinant.” When the output of a transformation is a line,

meaning it’s one-dimensional, we say the transformation has a “rank” of

one. If all the vectors land on some two-dimensional

plane, We say the transformation has a “rank” of

two. So the word “rank” means the number of dimensions

in the output of a transformation. For instance, in the case of 2×2 matrices,

rank 2 is the best that it can be. It means the basis vectors continue to span

the full two dimensions of space, and the determinant is nonzero. But for 3×3 matrices, rank 2 means that we’ve

collapsed, but not as much as they would have collapsed

for a rank 1 situation. If a 3D transformation has a nonzero determinant,

and its output fills all of 3D space, it has a rank of 3. This set of all possible outputs for your

matrix, whether it’s a line, a plane, 3D space, whatever, is called the “column space” of your matrix. You can probably guess where that name comes

from. The columns of your matrix

tell you where the basis vectors land, and the span of those transformed basis

vectors gives you all possible outputs. In other words, the column space is the

span of the columns of your matrix. So, a more precise definition of rank

would be that it’s the number of dimensions in the column

space. When this rank is as high as it can be, meaning it equals the number of columns, we

call the matrix “full rank.” Notice, the zero vector will always be

included in the column space, since linear transformations must keep the

origin fixed in place. For a full rank transformation, the only vector

that lands at the origin is the zero vector itself, but for matrices that aren’t full rank,

which squish to a smaller dimension, you can have a whole bunch of vectors that

land on zero. If a 2D transformation squishes space onto

a line, for example, there is a separate line in a different direction, full of vectors that get squished onto the

origin. If a 3D transformation squishes space onto

a plane, there’s also a full line of vectors that

land on the origin. If a 3D transformation squishes all the space

onto a line, then there’s a whole plane full of vectors

that land on the origin. This set of vectors that lands on the

origin is called the “null space” or the “kernel” of your matrix. It’s the space of all vectors that become

null, in the sense that they land on the zero vector. In terms of the linear system of

equations, when v happens to be the zero vector, the null space gives you all of

the possible solutions to the equation. So that’s a very high-level overview of how to think about linear systems of equations

geometrically. Each system has

some kind of linear transformation associated with it, and when that

transformation has an inverse, you can use that inverse to solve your system. Otherwise, the idea of column space lets

us understand when a solution even exists, and the idea of a null space

helps us to understand what the set of all possible solutions can look like. Again there’s a lot that I haven’t

covered here, most notably how to compute these things. I also had to limit my scope to examples where

the number of equations equals the number of unknowns. But the goal here is not to try to teach everything; it’s that you come away with

a strong intuition for inverse matrices, column space, and null space, and that those intuitions make any future

learning that you do more fruitful. Next video, by popular request, will be a

brief footnote about nonsquare matrices. Then, after that, I’m going to give you my

take on dot products, and something pretty cool that

happens when you view them under the light of linear transformations. See you then!